Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 619
Filtrar
1.
Methods Mol Biol ; 2442: 663-683, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35320552

RESUMO

Galectin-1 is a small (14.5 kDa) multifunctional protein with cell-cell and cell-ECM adhesion due to interactions with the carbohydrate recognition domain (CRD). In two types of muscular dystrophies, this lectin protein has shown therapeutic properties, including positive regulation of skeletal muscle differentiation and regeneration. Both Duchenne and limb-girdle muscular dystrophy 2B (LGMD2B) are subtypes of muscular dystrophies characterized by deficient membrane repair, muscle weakness, and eventual loss of ambulation. This chapter explains confocal techniques such as laser injury, calcium imaging, and galectin-1 localization to examine the effects of galectin-1 on membrane repair in injured LGMD2B models.


Assuntos
Galectina 1 , Distrofia Muscular do Cíngulo dos Membros , Sarcolema , Galectina 1/metabolismo , Galectina 1/farmacologia , Galectina 1/uso terapêutico , Humanos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Distrofia Muscular do Cíngulo dos Membros/tratamento farmacológico , Sarcolema/efeitos dos fármacos , Sarcolema/fisiologia
2.
Biotechniques ; 69(5): 388-391, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33000629

RESUMO

Isolated myofibers are commonly used to understand the function of skeletal muscle in vivo. This can involve single isolated myofibers obtained from dissection or from enzymatic dissociation. Isolation via dissection allows control of sarcomere length and preserves tendon attachment but is labor-intensive, time-consuming and yields few viable myofibers. In contrast, enzymatic dissociation is fast and facile, produces hundreds of myofibers, and more importantly reduces the number of muscles/animals needed for studies. Biomechanical properties of the sarcolemma have been studied using myofibers from the extensor digitorum longus, but this has been limited to dissected myofibers, making data collection slow and difficult. We have modified this tool to perform biomechanical measurements of the sarcolemma in dissociated myofibers from the flexor digitorum brevis.


Assuntos
Técnicas de Cultura de Células/métodos , Fibras Musculares Esqueléticas/citologia , Sarcolema/fisiologia , Animais , Fenômenos Biomecânicos , Elasticidade , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Fibras Musculares Esqueléticas/ultraestrutura
3.
Sci Rep ; 10(1): 14129, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32839504

RESUMO

Cardiac myocytes have multiple cell autonomous mechanisms that facilitate stabilization and repair of damaged sarcolemmal membranes following myocardial injury. Dysferlin is a protein which facilitates membrane repair by promoting membrane resealing. Although prior studies have shown that dysferlin-deficient (Dysf-/-) mouse hearts have an impaired recovery from acute ischemia/reperfusion (I/R) injury ex vivo, the role of dysferlin in mediating the recovery from myocardial injury in vivo is unknown. Here we show that Dysf-/- mice develop adverse LV remodeling following I/R injury secondary to the collateral damage from sustained myocardial inflammation within the infarct zone. Backcrossing Dysf-/- mice with mice lacking signaling through the Toll-Interleukin 1 Receptor Domain-Containing Adaptor Protein (Tirap-/-), attenuated inflammation and abrogated adverse LV remodeling following I/R injury. Subsequent studies using Poloxamer 188 (P188), a membrane resealing reagent, demonstrated that P188 did not attenuate inflammation nor prevent adverse LV remodeling in Dysf-/- mice following I/R injury. Viewed together these studies reveal a previously unappreciated role for the importance of membrane sealing and the resolution of inflammation following myocardial injury.


Assuntos
Disferlina/genética , Glicoproteínas de Membrana/metabolismo , Isquemia Miocárdica/patologia , Receptores de Interleucina-1/metabolismo , Traumatismo por Reperfusão/patologia , Remodelação Ventricular/fisiologia , Animais , Cardiotônicos/farmacologia , Disferlina/deficiência , Inflamação/patologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/patologia , Fosfolipídeos/metabolismo , Poloxâmero/farmacologia , Receptores de Interleucina-1/genética , Sarcolema/fisiologia , Transdução de Sinais , Tensoativos/farmacologia
4.
Nat Commun ; 11(1): 3711, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709891

RESUMO

The skeletal muscle T-tubule is a specialized membrane domain essential for coordinated muscle contraction. However, in the absence of genetically tractable systems the mechanisms involved in T-tubule formation are unknown. Here, we use the optically transparent and genetically tractable zebrafish system to probe T-tubule development in vivo. By combining live imaging of transgenic markers with three-dimensional electron microscopy, we derive a four-dimensional quantitative model for T-tubule formation. To elucidate the mechanisms involved in T-tubule formation in vivo, we develop a quantitative screen for proteins that associate with and modulate early T-tubule formation, including an overexpression screen of the entire zebrafish Rab protein family. We propose an endocytic capture model involving firstly, formation of dynamic endocytic tubules at transient nucleation sites on the sarcolemma, secondly, stabilization by myofibrils/sarcoplasmic reticulum and finally, delivery of membrane from the recycling endosome and Golgi complex.


Assuntos
Contração Muscular/fisiologia , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestrutura , Sarcolema/fisiologia , Sarcolema/ultraestrutura , Animais , Canais de Cálcio/metabolismo , Canais de Cálcio/ultraestrutura , Canais de Cálcio Tipo L/metabolismo , Proteínas de Transporte/metabolismo , Biologia do Desenvolvimento , Complexo de Golgi/metabolismo , Masculino , Microscopia Eletrônica , Proteínas Musculares/química , Músculo Esquelético/química , Miofibrilas/metabolismo , Sarcolema/química , Retículo Sarcoplasmático/metabolismo , Peixe-Zebra
5.
PLoS One ; 15(4): e0231056, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32302318

RESUMO

Transverse and axial tubules (TATS) are an essential ingredient of the excitation-contraction machinery that allow the effective coupling of L-type Calcium Channels (LCC) and ryanodine receptors (RyR2). They form a regular network in ventricular cells, while their presence in atrial myocytes is variable regionally and among animal species We have studied the effect of variations in the TAT network using a bidomain computational model of an atrial myocyte with variable density of tubules. At each z-line the t-tubule length is obtained from an exponential distribution, with a given mean penetration length. This gives rise to a distribution of t-tubules in the cell that is characterized by the fractional area (F.A.) occupied by the t-tubules. To obtain consistent results, we average over different realizations of the same mean penetration length. To this, in some simulations we add the effect of a network of axial tubules. Then we study global properties of calcium signaling, as well as regional heterogeneities and local properties of sparks and RyR2 openings. In agreement with recent experiments in detubulated ventricular and atrial cells, we find that detubulation reduces the calcium transient and synchronization in release. However, it does not affect sarcoplasmic reticulum (SR) load, so the decrease in SR calcium release is due to regional differences in Ca2+ release, that is restricted to the cell periphery in detubulated cells. Despite the decrease in release, the release gain is larger in detubulated cells, due to recruitment of orphaned RyR2s, i.e, those that are not confronting a cluster of LCCs. This probably provides a safeguard mechanism, allowing physiological values to be maintained upon small changes in the t-tubule density. Finally, we do not find any relevant change in spark properties between tubulated and detubulated cells, suggesting that the differences found in experiments could be due to differential properties of the RyR2s in the membrane and in the t-tubules, not incorporated in the present model. This work will help understand the effect of detubulation, that has been shown to occur in disease conditions such as heart failure (HF) in ventricular cells, or atrial fibrillation (AF) in atrial cells.


Assuntos
Canais de Cálcio Tipo L/genética , Sinalização do Cálcio/genética , Miócitos Cardíacos/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Potenciais de Ação/fisiologia , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Fibrilação Atrial/genética , Fibrilação Atrial/fisiopatologia , Cálcio/metabolismo , Acoplamento Excitação-Contração/fisiologia , Átrios do Coração/metabolismo , Átrios do Coração/fisiopatologia , Humanos , Mamíferos , Sarcolema/genética , Sarcolema/fisiologia , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/fisiologia , Ovinos
6.
Clin Neurophysiol ; 131(4): 816-827, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32066100

RESUMO

OBJECTIVE: Hypokalaemic periodic paralysis (HypoPP) is caused by mutations of Cav1.1, and Nav1.4 which result in an aberrant gating pore current. Hyperkalaemic periodic paralysis (HyperPP) is due to a gain-of-function mutation of the main alpha pore of Nav1.4. This study used muscle velocity recovery cycles (MVRCs) to investigate changes in interictal muscle membrane properties in vivo. METHODS: MVRCs and responses to trains of stimuli were recorded in tibialis anterior and compared in patients with HyperPP(n = 7), HypoPP (n = 10), and normal controls (n = 26). RESULTS: Muscle relative refractory period was increased, and early supernormality reduced in HypoPP, consistent with depolarisation of the interictal resting membrane potential. In HyperPP the mean supernormality and residual supernormality to multiple conditioning stimuli were increased, consistent with increased inward sodium current and delayed repolarisation, predisposing to spontaneous myotonic discharges. CONCLUSIONS: The in vivo findings suggest the interictal resting membrane potential is depolarized in HypoPP, and mostly normal in HyperPP. The MVRC findings in HyperPP are consistent with presence of a window current, previously proposed on the basis of in vitro expression studies. Although clinically similar, HyperPP was electrophysiologically distinct from paramyotonia congenita. SIGNIFICANCE: MVRCs provide important in vivo data that complements expression studies of ion channel mutations.


Assuntos
Paralisia Periódica Hipopotassêmica/fisiopatologia , Potenciais da Membrana/fisiologia , Músculo Esquelético/fisiopatologia , Paralisia Periódica Hiperpotassêmica/fisiopatologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sarcolema/fisiologia , Adulto Jovem
7.
Cells ; 9(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878335

RESUMO

The skeletal muscle and myocardial cells present highly specialized structures; for example, the close interaction between the sarcoplasmic reticulum (SR) and mitochondria-responsible for excitation-metabolism coupling-and the junction that connects the SR with T-tubules, critical for excitation-contraction (EC) coupling. The mechanisms that underlie EC coupling in these two cell types, however, are fundamentally distinct. They involve the differential expression of Ca2+ channel subtypes: CaV1.1 and RyR1 (skeletal), vs. CaV1.2 and RyR2 (cardiac). The CaV channels transform action potentials into elevations of cytosolic Ca2+, by activating RyRs and thus promoting SR Ca2+ release. The high levels of Ca2+, in turn, stimulate not only the contractile machinery but also the generation of mitochondrial reactive oxygen species (ROS). This forward signaling is reciprocally regulated by the following feedback mechanisms: Ca2+-dependent inactivation (of Ca2+ channels), the recruitment of Na+/Ca2+ exchanger activity, and oxidative changes in ion channels and transporters. Here, we summarize both well-established concepts and recent advances that have contributed to a better understanding of the molecular mechanisms involved in this bidirectional signaling.


Assuntos
Canais de Cálcio/metabolismo , Canais de Cálcio/fisiologia , Sarcolema/metabolismo , Retículo Sarcoplasmático/metabolismo , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/fisiologia , Citosol/metabolismo , Acoplamento Excitação-Contração/fisiologia , Humanos , Músculo Esquelético/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sarcolema/fisiologia , Retículo Sarcoplasmático/fisiologia , Transdução de Sinais
8.
Clin Neurophysiol ; 130(12): 2272-2281, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31542255

RESUMO

OBJECTIVE: To study patients with sporadic inclusion body myositis (sIBM) with muscle velocity recovery cycles (MVRC) to assess muscle membrane excitability, pathophysiological mechanisms and potential biomarkers of this disorder. METHODS: MVRC were recorded from 20 individuals with sIBM from tibialis anterior (TA) and rectus femoris (RF) muscles. Excitability parameters were compared with MVRC data obtained from 22 normal controls >50 years. RESULTS: Muscle relative refractory period was prolonged in both TA (6.4 ms vs 4.4 ms, P < 0.001) and RF (7.1 ms vs 3.9 ms, P < 0.001) of sIBM affected muscle when compared to controls. Early supernormality was reduced in both TA (3.6% vs 8.8% P = 0.001) and in RF (mean 5.4% vs 13% P < 0.001). Late supernormality was only decreased significantly in sIBM affected TA (1.8% vs 3.6% P = 0.001) but not in RF. No consistent correlations between MVRC parameters and clinical markers of sIBM disease severity were found. CONCLUSION: The resting sarcolemmal muscle membrane potential of sIBM muscle is depolarized relative to that of normal controls, which may be related to intramuscular amyloid deposition in sIBM. SIGNIFICANCE: Sarcolemmal depolarization may play a role in muscle dysfunction and weakness observed in sIBM patients.


Assuntos
Potenciais da Membrana , Músculo Esquelético/fisiopatologia , Miosite de Corpos de Inclusão/fisiopatologia , Sarcolema/fisiologia , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Contração Muscular , Período Refratário Eletrofisiológico
9.
J Muscle Res Cell Motil ; 40(3-4): 319-333, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31520263

RESUMO

The cardiomyocyte plasma membrane, termed the sarcolemma, is fundamental for regulating a myriad of cellular processes. For example, the structural integrity of the cardiomyocyte sarcolemma is essential for mediating cardiac contraction by forming microdomains such as the t-tubular network, caveolae and the intercalated disc. Significantly, remodelling of these sarcolemma microdomains is a key feature in the development and progression of heart failure (HF). However, despite extensive characterisation of the associated molecular and ultrastructural events there is a lack of clarity surrounding the mechanisms driving adverse morphological rearrangements. The sarcolemma also provides protection, and is the cell's first line of defence, against external stresses such as oxygen and nutrient deprivation, inflammation and oxidative stress with a loss of sarcolemma viability shown to be a key step in cell death via necrosis. Significantly, cumulative cell death is also a feature of HF, and is linked to disease progression and loss of cardiac function. Herein, we will review the link between structural and molecular remodelling of the sarcolemma associated with the progression of HF, specifically considering the evidence for: (i) Whether intrinsic, evolutionary conserved, plasma membrane injury-repair mechanisms are in operation in the heart, and (ii) if deficits in key 'wound-healing' proteins (annexins, dysferlin, EHD2 and MG53) may play a yet to be fully appreciated role in triggering sarcolemma microdomain remodelling and/or necrosis. Cardiomyocytes are terminally differentiated with very limited regenerative capability and therefore preserving cell viability and cardiac function is crucially important. This review presents a novel perspective on sarcolemma remodelling by considering whether targeting proteins that regulate sarcolemma injury-repair may hold promise for developing new strategies to attenuate HF progression.


Assuntos
Insuficiência Cardíaca/fisiopatologia , Miócitos Cardíacos/metabolismo , Sarcolema/fisiologia , Humanos
10.
Muscle Nerve ; 60(4): 433-436, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31330047

RESUMO

INTRODUCTION: The sarcolemmal resting membrane potential (RMP) affects muscle excitability, contractility, and force generation. However, there are limited In vivo data on the normal RMP of the human sarcolemma between muscles. We hypothesize that the in vivo RMP may differ between human muscles with different physiological roles. METHODS: Muscle velocity recovery cycles were recorded from a proximal antigravity muscle, the rectus femoris, and compared with paired recordings from a distal non-antigravity muscle, the tibialis anterior, in 34 normal individuals. RESULTS: Significant differences in muscle relative refractory period (3.55 millseconds vs 3.87 milliseconds, P = .002), early supernormality (14.22% vs 10.50%, P < .0001), and late supernormality (5.43% vs 3.50%, P < .0001) were observed. DISCUSSION: The results strongly suggest a less negative RMP in tibialis anterior vs rectus femoris and attest to intermuscle differences in normal excitability and physiology. This novel finding employing an in vivo methodology highlights the need for muscle-specific normative data in future studies.


Assuntos
Potenciais da Membrana/fisiologia , Músculo Quadríceps/fisiologia , Período Refratário Eletrofisiológico/fisiologia , Sarcolema/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/fisiologia , Valores de Referência , Adulto Jovem
11.
Pharmacol Ther ; 197: 179-190, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30703415

RESUMO

α2-adrenoceptor (α2-AR) isoforms, abundant in sympathetic synapses and noradrenergic neurons of the central nervous system, are integral in the presynaptic feed-back loop mechanism that moderates norepinephrine surges. We recently identified that postsynaptic α2-ARs, found in the myocellular sarcolemma, also contribute to a muscle-delimited feedback control capable of attenuating mobilization of intracellular Ca2+ and myocardial contractility. This previously unrecognized α2-AR-dependent rheostat is able to counteract competing adrenergic receptor actions in cardiac muscle. Specifically, in ventricular myocytes, nitric oxide (NO) and cGMP are the intracellular messengers of α2-AR signal transduction pathways that gauge the kinase-phosphatase balance and manage cellular Ca2+ handling preventing catecholamine-induced Ca2+ overload. Moreover, α2-AR signaling counterbalances phospholipase C - PKC-dependent mechanisms underscoring a broader cardioprotective potential under sympathoadrenergic and angiotensinergic challenge. Recruitment of such tissue-specific features of α2-AR under sustained sympathoadrenergic drive may, in principle, be harnessed to mitigate or prevent cardiac malfunction. However, cardiovascular disease may compromise peripheral α2-AR signaling limiting pharmacological targeting of these receptors. Prospective cardiac-specific gene or cell-based therapeutic approaches aimed at repairing or improving stress-protective α2-AR signaling may offer an alternative towards enhanced preservation of cardiac muscle structure and function.


Assuntos
Coração/fisiologia , Receptores Adrenérgicos alfa 2/fisiologia , Sarcolema/fisiologia , Animais , Retroalimentação Fisiológica , Cardiopatias/tratamento farmacológico , Cardiopatias/fisiopatologia , Humanos
12.
J Physiol ; 597(8): 2139-2162, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30714156

RESUMO

KEY POINTS: Prevailing dogma holds that activation of the ß-adrenergic receptor/cAMP/protein kinase A signalling pathway leads to enhanced L-type CaV 1.2 channel activity, resulting in increased Ca2+ influx into ventricular myocytes and a positive inotropic response. However, the full mechanistic and molecular details underlying this phenomenon are incompletely understood. CaV 1.2 channel clusters decorate T-tubule sarcolemmas of ventricular myocytes. Within clusters, nanometer proximity between channels permits Ca2+ -dependent co-operative gating behaviour mediated by physical interactions between adjacent channel C-terminal tails. We report that stimulation of cardiomyocytes with isoproterenol, evokes dynamic, protein kinase A-dependent augmentation of CaV 1.2 channel abundance along cardiomyocyte T-tubules, resulting in the appearance of channel 'super-clusters', and enhanced channel co-operativity that amplifies Ca2+ influx. On the basis of these data, we suggest a new model in which a sub-sarcolemmal pool of pre-synthesized CaV 1.2 channels resides in cardiomyocytes and can be mobilized to the membrane in times of high haemodynamic or metabolic demand, to tune excitation-contraction coupling. ABSTRACT: Voltage-dependent L-type CaV 1.2 channels play an indispensable role in cardiac excitation-contraction coupling. Activation of the ß-adrenergic receptor (ßAR)/cAMP/protein kinase A (PKA) signalling pathway leads to enhanced CaV 1.2 activity, resulting in increased Ca2+ influx into ventricular myocytes and a positive inotropic response. CaV 1.2 channels exhibit a clustered distribution along the T-tubule sarcolemma of ventricular myocytes where nanometer proximity between channels permits Ca2+ -dependent co-operative gating behaviour mediated by dynamic, physical, allosteric interactions between adjacent channel C-terminal tails. This amplifies Ca2+ influx and augments myocyte Ca2+ transient and contraction amplitudes. We investigated whether ßAR signalling could alter CaV 1.2 channel clustering to facilitate co-operative channel interactions and elevate Ca2+ influx in ventricular myocytes. Bimolecular fluorescence complementation experiments reveal that the ßAR agonist, isoproterenol (ISO), promotes enhanced CaV 1.2-CaV 1.2 physical interactions. Super-resolution nanoscopy and dynamic channel tracking indicate that these interactions are expedited by enhanced spatial proximity between channels, resulting in the appearance of CaV 1.2 'super-clusters' along the z-lines of ISO-stimulated cardiomyocytes. The mechanism that leads to super-cluster formation involves rapid, dynamic augmentation of sarcolemmal CaV 1.2 channel abundance after ISO application. Optical and electrophysiological single channel recordings confirm that these newly inserted channels are functional and contribute to overt co-operative gating behaviour of CaV 1.2 channels in ISO stimulated myocytes. The results of the present study reveal a new facet of ßAR-mediated regulation of CaV 1.2 channels in the heart and support the novel concept that a pre-synthesized pool of sub-sarcolemmal CaV 1.2 channel-containing vesicles/endosomes resides in cardiomyocytes and can be mobilized to the sarcolemma to tune excitation-contraction coupling to meet metabolic and/or haemodynamic demands.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Miócitos Cardíacos/fisiologia , Receptores Adrenérgicos beta/fisiologia , Agonistas Adrenérgicos beta/farmacologia , Animais , Linhagem Celular , Feminino , Ventrículos do Coração/citologia , Humanos , Isoproterenol/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Sarcolema/fisiologia
13.
Skelet Muscle ; 9(1): 1, 2019 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-30611303

RESUMO

BACKGROUND: Niemann-Pick disease type A (NPDA), a disease caused by mutations in acid sphingomyelinase (ASM), involves severe neurodegeneration and early death. Intracellular lipid accumulation and plasma membrane alterations are implicated in the pathology. ASM is also linked to the mechanism of plasma membrane repair, so we investigated the impact of ASM deficiency in skeletal muscle, a tissue that undergoes frequent cycles of injury and repair in vivo. METHODS: Utilizing the NPDA/B mouse model ASM-/- and wild type (WT) littermates, we performed excitation-contraction coupling/Ca2+ mobilization and sarcolemma injury/repair assays with isolated flexor digitorum brevis fibers, proteomic analyses with quadriceps femoris, flexor digitorum brevis, and tibialis posterior muscle and in vivo tests of the contractile force (maximal isometric torque) of the quadriceps femoris muscle before and after eccentric contraction-induced muscle injury. RESULTS: ASM-/- flexor digitorum brevis fibers showed impaired excitation-contraction coupling compared to WT, a defect expressed as reduced tetanic [Ca2+]i in response to electrical stimulation and early failure in sustaining [Ca2+]i during repeated tetanic contractions. When injured mechanically by needle passage, ASM-/- flexor digitorum brevis fibers showed susceptibility to injury similar to WT, but a reduced ability to reseal the sarcolemma. Proteomic analyses revealed changes in a small group of skeletal muscle proteins as a consequence of ASM deficiency, with downregulation of calsequestrin occurring in the three different muscles analyzed. In vivo, the loss in maximal isometric torque of WT quadriceps femoris was similar immediately after and 2 min after injury. The loss in ASM-/- mice immediately after injury was similar to WT, but was markedly larger at 2 min after injury. CONCLUSIONS: Skeletal muscle fibers from ASM-/- mice have an impairment in intracellular Ca2+ handling that results in reduced Ca2+ mobilization and a more rapid decline in peak Ca2+ transients during repeated contraction-relaxation cycles. Isolated fibers show reduced ability to repair damage to the sarcolemma, and this is associated with an exaggerated deficit in force during recovery from an in vivo eccentric contraction-induced muscle injury. Our findings uncover the possibility that skeletal muscle functional defects may play a role in the pathology of NPDA/B disease.


Assuntos
Acoplamento Excitação-Contração , Músculo Esquelético/fisiopatologia , Doença de Niemann-Pick Tipo A/fisiopatologia , Doença de Niemann-Pick Tipo B/fisiopatologia , Sarcolema/fisiologia , Animais , Sinalização do Cálcio , Modelos Animais de Doenças , Feminino , Masculino , Camundongos Knockout , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/lesões , Músculo Esquelético/metabolismo , Doença de Niemann-Pick Tipo A/metabolismo , Doença de Niemann-Pick Tipo B/metabolismo , Proteoma , Recuperação de Função Fisiológica , Sarcolema/metabolismo , Esfingomielina Fosfodiesterase/genética
14.
PLoS One ; 13(7): e0200301, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29975744

RESUMO

A prominent theory of cell death in myocardial ischemia/reperfusion (I/R) posits that the primary and pivotal step of irreversible cell injury is the opening of the mitochondrial permeability transition (MPT) pore. However, the predominantly positive evidence of protection against infarct afforded by the MPT inhibitor, Cyclosporine A (CsA), in experimental studies is in stark contrast with the overall lack of benefit found in clinical trials of CsA. One reason for the discrepancy might be the fact that relatively short experimental ischemic episodes (<1 hour) do not represent clinically-realistic durations, usually exceeding one hour. Here we tested the hypothesis that MPT is not the primary event of cell death after prolonged (60-80 min) episodes of global ischemia. We used confocal microcopy in Langendorff-perfused rabbit hearts treated with the electromechanical uncoupler, 2,3-Butanedione monoxime (BDM, 20 mM) to allow tracking of MPT and sarcolemmal permeabilization (SP) in individual ventricular myocytes. The time of the steepest drop in fluorescence of mitochondrial membrane potential (ΔΨm)-sensitive dye, TMRM, was used as the time of MPT (TMPT). The time of 20% uptake of the normally cell-impermeable dye, YO-PRO1, was used as the time of SP (TSP). We found that during reperfusion MPT and SP were tightly coupled, with MPT trending slightly ahead of SP (TSP-TMPT = 0.76±1.31 min; p = 0.07). These coupled MPT/SP events occurred in discrete myocytes without crossing cell boundaries. CsA (0.2 µM) did not reduce the infarct size, but separated SP and MPT events, such that detectable SP was significantly ahead of MPT (TSP -TMPT = -1.75±1.28 min, p = 0.006). Mild permeabilization of cells with digitonin (2.5-20 µM) caused coupled MPT/SP events which occurred in discrete myocytes similar to those observed in Control and CsA groups. In contrast, deliberate induction of MPT by titration with H2O2 (200-800 µM), caused propagating waves of MPT which crossed cell boundaries and were uncoupled from SP. Taken together, these findings suggest that after prolonged episodes of ischemia, SP is the primary step in myocyte death, of which MPT is an immediate and unavoidable consequence.


Assuntos
Cardiotônicos/farmacologia , Morte Celular , Permeabilidade da Membrana Celular/fisiologia , Ciclosporina/farmacologia , Isquemia Miocárdica/patologia , Sarcolema/fisiologia , Animais , Morte Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Feminino , Masculino , Microscopia Confocal , Traumatismo por Reperfusão Miocárdica/patologia , Coelhos , Sarcolema/efeitos dos fármacos
15.
Muscle Nerve ; 57(6): 981-988, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29314071

RESUMO

INTRODUCTION: The exact mechanisms underlying the loss of skeletal muscle bulk and power with normal human aging are not well established. Recording of muscle velocity recovery cycles (MVRCs) is an in-vivo neurophysiologic technique we employed to assess the impact of age on sarcolemmal excitability. METHODS: MVRC recordings were obtained from tibialis anterior (n = 74) and rectus femoris (n = 32) muscles in 74 healthy subjects (18-84 years, median age 35 years, interquartile range 29-55 years). RESULTS: Increasing age was linearly associated with longer muscle relative refractory period (MRRP) and reduced early supernormality (ESN) in both tibialis anterior (MRRP: r2 = 0.38, P < 0.001; ESN: r2 = 0.33, P < 0.001) and rectus femoris (MRRP: r2 = 0.30, P = 0.002; ESN: r2 = 0.19, P = 0.01) muscles. DISCUSSION: The results are consistent with progressive depolarization of the resting sarcolemmal potential with normal aging. This may be an important mechanism in explaining age-related muscle decline. Muscle Nerve 57: 981-988, 2018.


Assuntos
Potenciais de Ação/fisiologia , Envelhecimento/fisiologia , Músculo Esquelético/fisiologia , Período Refratário Eletrofisiológico/fisiologia , Sarcolema/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
16.
J Gen Physiol ; 150(1): 95-110, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29229646

RESUMO

The complex membrane structure of the tubular system (t-system) in skeletal muscle fibers is open to the extracellular environment, which prevents measurements of H+ movement across its interface with the cytoplasm by conventional methods. Consequently, little is known about the t-system's role in the regulation of cytoplasmic pH, which is different from extracellular pH. Here we describe a novel approach to measure H+-flux measurements across the t-system of fast-twitch fibers under different conditions. The approach involves loading the t-system of intact rat fast-twitch fibers with a strong pH buffer (20 mM HEPES) and pH-sensitive fluorescent probe (10 mM HPTS) before the t-system is sealed off. The pH changes in the t-system are then tracked by confocal microscopy after rapid changes in cytoplasmic ionic conditions. T-system sealing is achieved by removing the sarcolemma by microdissection (mechanical skinning), which causes the tubules to pinch off and seal tight. After this procedure, the t-system repolarizes to physiological levels and can be electrically stimulated when placed in K+-based solutions of cytosolic-like ionic composition. Using this approach, we show that the t-system of fast-twitch skeletal fibers displays amiloride-sensitive Na+/H+ exchange (NHE), which decreases markedly at alkaline cytosolic pH and has properties similar to that in mammalian cardiac myocytes. We observed mean values for NHE density and proton permeability coefficient of 339 pmol/m2 of t-system membrane and 158 µm/s, respectively. We conclude that the cytosolic pH in intact resting muscle can be quantitatively explained with respect to extracellular pH by assuming that these values apply to the t-system membrane and the sarcolemma.


Assuntos
Fibras Musculares de Contração Rápida/metabolismo , Prótons , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Células Cultivadas , Difusão , Concentração de Íons de Hidrogênio , Masculino , Fibras Musculares de Contração Rápida/fisiologia , Ratos , Ratos Wistar , Sarcolema/metabolismo , Sarcolema/fisiologia
17.
PLoS Genet ; 13(10): e1007070, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29065150

RESUMO

Genetic disruption of the dystrophin complex produces muscular dystrophy characterized by a fragile muscle plasma membrane leading to excessive muscle degeneration. Two genetic modifiers of Duchenne Muscular Dystrophy implicate the transforming growth factor ß (TGFß) pathway, osteopontin encoded by the SPP1 gene and latent TGFß binding protein 4 (LTBP4). We now evaluated the functional effect of these modifiers in the context of muscle injury and repair to elucidate their mechanisms of action. We found that excess osteopontin exacerbated sarcolemmal injury, and correspondingly, that loss of osteopontin reduced injury extent both in isolated myofibers and in muscle in vivo. We found that ablation of osteopontin was associated with reduced expression of TGFß and TGFß-associated pathways. We identified that increased TGFß resulted in reduced expression of Anxa1 and Anxa6, genes encoding key components of the muscle sarcolemma resealing process. Genetic manipulation of Ltbp4 in dystrophic muscle also directly modulated sarcolemmal resealing, and Ltbp4 alleles acted in concert with Anxa6, a distinct modifier of muscular dystrophy. These data provide a model in which a feed forward loop of TGFß and osteopontin directly impacts the capacity of muscle to recover from injury, and identifies an intersection of genetic modifiers on muscular dystrophy.


Assuntos
Genes Modificadores , Proteínas de Ligação a TGF-beta Latente/fisiologia , Músculo Esquelético/fisiologia , Distrofia Muscular Animal/genética , Osteopontina/metabolismo , Animais , Anexina A1/genética , Anexina A1/metabolismo , Anexina A6/genética , Anexina A6/metabolismo , Feminino , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos DBA , Camundongos Knockout , Músculo Esquelético/lesões , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patologia , Osteopontina/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Recuperação de Função Fisiológica , Sarcolema/fisiologia
18.
Sci Rep ; 7(1): 10889, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28883612

RESUMO

Dyslipidemia is associated with greater risk of ventricular tachyarrhythmias in patients with cardiovascular diseases. We aimed to examine whether the most electronegative subfraction of low-density lipoprotein (LDL), L5, is correlated with QTc prolongation in patients with coronary artery disease (CAD) and investigate the effects of human L5 on the electrophysiological properties of cardiomyocytes in relation to the lectin-like oxidized LDL receptor (LOX-1). L5 was isolated from the plasma of 40 patients with angiography documented CAD and 13 patients with no CAD to correlate the QTc interval respectively. The mean concentration of L5 was higher and correlated with QTc in patients with CAD compared to controls. To examine the direct effect of L5 on QTc, mice were intravenously injected with L5 or L1. L5-injected wild-type but not LOX-1-/- mice showed longer QTc compared to L1-injected animals in vivo with corresponding longer action potential duration (APD) in cardiomyocytes incubated with L5 in vitro. The APD prolongation was mediated by an increase of L-type calcium current and a decrease of transient outward potassium current. We show that L5 was positively correlated with QTc prolongation in patients with ischemic heart disease. L5 can modulate cardiac repolarization via LOX-1-mediated alteration sarcolemmal ionic currents.


Assuntos
Doença da Artéria Coronariana/patologia , Canais Iônicos/metabolismo , Lipoproteínas LDL/sangue , Miocárdio/patologia , Receptores Depuradores Classe E/metabolismo , Potenciais de Ação , Animais , Células Cultivadas , Humanos , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Sarcolema/fisiologia
19.
Biophys J ; 113(5): 1047-1059, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28877488

RESUMO

Caveolae are signal transduction centers, yet their subcellular distribution and preservation in cardiac myocytes after cell isolation are not well documented. Here, we quantify caveolae located within 100 nm of the outer cell surface membrane in rabbit single-ventricular cardiomyocytes over 8 h post-isolation and relate this to the presence of caveolae in intact tissue. Hearts from New Zealand white rabbits were either chemically fixed by coronary perfusion or enzymatically digested to isolate ventricular myocytes, which were subsequently fixed at 0, 3, and 8 h post-isolation. In live cells, the patch-clamp technique was used to measure whole-cell plasma membrane capacitance, and in fixed cells, caveolae were quantified by transmission electron microscopy. Changes in cell-surface topology were assessed using scanning electron microscopy. In fixed ventricular myocardium, dual-axis electron tomography was used for three-dimensional reconstruction and analysis of caveolae in situ. The presence and distribution of surface-sarcolemmal caveolae in freshly isolated cells matches that of intact myocardium. With time, the number of surface-sarcolemmal caveolae decreases in isolated cardiomyocytes. This is associated with a gradual increase in whole-cell membrane capacitance. Concurrently, there is a significant increase in area, diameter, and circularity of sub-sarcolemmal mitochondria, indicative of swelling. In addition, electron tomography data from intact heart illustrate the regular presence of caveolae not only at the surface sarcolemma, but also on transverse-tubular membranes in ventricular myocardium. Thus, caveolae are dynamic structures, present both at surface-sarcolemmal and transverse-tubular membranes. After cell isolation, the number of surface-sarcolemmal caveolae decreases significantly within a time frame relevant for single-cell research. The concurrent increase in cell capacitance suggests that membrane incorporation of surface-sarcolemmal caveolae underlies this, but internalization and/or micro-vesicle loss to the extracellular space may also contribute. Given that much of the research into cardiac caveolae-dependent signaling utilizes isolated cells, and since caveolae-dependent pathways matter for a wide range of other study targets, analysis of isolated cell data should take the time post-isolation into account.


Assuntos
Cavéolas , Ventrículos do Coração/citologia , Miócitos Cardíacos/citologia , Animais , Cavéolas/fisiologia , Separação Celular , Células Cultivadas , Capacitância Elétrica , Tomografia com Microscopia Eletrônica , Imageamento Tridimensional , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Mitocôndrias/fisiologia , Modelos Biológicos , Miócitos Cardíacos/fisiologia , Técnicas de Patch-Clamp , Coelhos , Sarcolema/fisiologia , Propriedades de Superfície , Fixação de Tecidos
20.
Methods Mol Biol ; 1668: 195-207, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28842911

RESUMO

The characterization of the membrane repair machinery in human skeletal muscle has become crucial, since it has been shown that some muscular dystrophies result from a defect of this fundamental physiological process. Deciphering membrane repair mechanism requires the development of methodologies allowing studying the response of skeletal muscle cells to sarcolemma damage and identifying candidate proteins playing a role in the membrane repair machinery. Here, we describe a protocol that is based on the creation of cell membrane disruption by infrared laser irradiation in human myotubes. Membrane disruption and repair are assayed by monitoring the incorporation into myotubes of the membrane probe FM1-43. This methodology has recently enabled us to show that Annexin-A5 is required for membrane repair in human skeletal muscle cells (Carmeille et al., Biochim Biophys Acta 1863:2267-2279, 2016).


Assuntos
Microscopia de Fluorescência por Excitação Multifotônica/métodos , Fibras Musculares Esqueléticas/fisiologia , Sarcolema/fisiologia , Anexina A5/metabolismo , Linhagem Celular , Citosol/química , Corantes Fluorescentes/química , Humanos , Raios Infravermelhos , Proteínas de Membrana/metabolismo , Fibras Musculares Esqueléticas/química , Compostos de Piridínio/química , Compostos de Amônio Quaternário/química , Sarcolema/química , Sarcolema/efeitos da radiação , Imagem com Lapso de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...